Analysis for Nonlinear Schrödinger Equations with Potential
نویسنده
چکیده
We justify the WKB analysis for the semiclassical nonlinear Schrödinger equation with a subquadratic potential. This concerns subcritical, critical, and supercritical cases as far as the geometrical optics method is concerned. In the supercritical case, this extends a previous result by E. Grenier; we also have to restrict to nonlinearities which are defocusing and cubic at the origin, but besides subquadratic potentials, we consider initial phases which may be unbounded. For this, we construct solutions for some compressible Euler equations with unbounded source term and unbounded initial velocity.
منابع مشابه
Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملSemiclassical Asymptotics for Weakly Nonlinear Bloch Waves
We study the simultaneous semi-classical and adiabatic asymptotics for a class of (weakly) nonlinear Schrödinger equations with a fast periodic potential and a slowly varying confinement potential. A rigorous two-scale WKB–analysis, locally in time, is performed. The main nonlinear phenomenon is a modification of the Berry phase.
متن کاملNonlinear Schrödinger Equations with Repulsive Harmonic Potential and Applications
We study the Cauchy problem for Schrödinger equations with repulsive quadratic potential and power-like nonlinearity. The local problem is well-posed in the same space as that used when a confining harmonic potential is involved. For a defocusing nonlinearity, it is globally well-posed, and a scattering theory is available, with no long range effect for any superlinear nonlinearity. When the no...
متن کاملExistence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملSymmetry-Breaking Bifurcation in Nonlinear Schrödinger/Gross-Pitaevskii Equations
We consider a class of nonlinear Schrödinger / Gross-Pitaveskii (NLS-GP) equations, i.e. NLS with a linear potential. We obtain conditions for a symmetry breaking bifurcation in a symmetric family of states asN , the squared L2 norm (particle number, optical power), is increased. In the special case where the linear potential is a doublewell with well separation L, we estimate Ncr(L), the symme...
متن کامل